Variations on a theme: The sum of equal powers of natural numbers (II)

Arkady Alt

This is the second of a series of notes, organized around the problem of finding a closed form for :

$$S_{p}(n) := \sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p}$$
 where $p, n \in \mathbb{N}$.

In the first article, which appeared in issue 8 of this volume, we showed that $S_p(n)$ is always a polynomial in n of degree p + 1, and we went over various ways to find that polynomial. As a review, the reader is encouraged to use one or more of these techniques to verify that

$$S_{2}(n) = \frac{n(n+1)(2n+1)}{6} = S_{1}(n) \cdot \frac{2n+1}{3},$$

$$S_{3}(n) = \frac{n^{2}(n+1)^{2}}{4} = S_{1}^{2}(n),$$

$$S_{4}(n) = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30} = S_{2}(n) \cdot \frac{6S_{1}(n)-1}{5},$$

$$S_{5}(n) = \frac{n^{2}(n+1)^{2}}{12} (2n^{2}+2n-1) = S_{1}^{2}(n) \cdot \frac{4S_{1}(n)-1}{3}.$$

The frequency with which the factor $S_1(n)$ appears is striking. In what follows, we will investigate the reasons for this.

The structure of $S_p(n)$

Because $S_1(n)$ appears so often, we will abbreviate it as S. We thus have (see the article by V. S. Abramovich in issue 6 of this volume):

$$S_{2}(n) = S \cdot \frac{2n+1}{3}$$

$$S_{3}(n) = S^{2}$$

$$S_{4}(n) = S_{2}(n) \cdot \frac{6S-1}{5} = \frac{S(6S-1)}{5} \cdot \frac{2n+1}{3}$$

$$S_{5}(n) = S^{2} \cdot \frac{4S-1}{3} = S_{3} \cdot \frac{4S-1}{3}$$

We observe that $S_4(n) = P(S)S_2(n)$ and $S_5(n) = Q(S)S_3(n)$, where P and Q are first-degree polynomials with rational coefficients. Does this pattern continue? We conjecture that $S_p(n) = S^{\delta(p)}Q_p(S) \cdot M_p(n)$, where

$$M_p(n) = \begin{cases} 1 & \text{if } p \text{ is odd,} \\ \frac{2n+1}{3} & \text{if } p \text{ is even,} \end{cases} \qquad \delta(p) = \begin{cases} 2 & \text{if } p \text{ is odd,} \\ 1 & \text{if } p \text{ is even,} \end{cases}$$

Copyright © Canadian Mathematical Society, 2015

432/ VARIATIONS ON A THEME: THE SUM OF EQUAL POWERS OF NATURAL NUMBERS (II)

and $Q_p(S)$ is a polynomial of degree $\left[\frac{p+1}{2}\right] - \delta(p)$ with rational coefficients. Because we are looking at patterns that skip a value of p, it will be convenient to find recurrences that do the same thing – using $S_1, S_3, \ldots, S_{2n-1}$ to find S_{2n+1} and $S_2, S_4, \ldots, S_{2n-2}$ to find S_{2n} .

Recurrence relations for S_p for odd p and for even p

Exercise 1 Let $p \ge 3$ be odd. Expand $(t+1)^{p+2} + (t-1)^{p+2}$ and show that this is equal to

$$2\sum_{i=0}^{\frac{p+1}{2}} \binom{p+2}{2i} t^{p+2-2i}$$

Use this to show that

$$S_{p}(n) = \frac{(n+1)^{p+2} - n^{p+2} - 1 - (p+2)(n^{2}+n) - 2\sum_{i=2}^{\frac{p-1}{2}} \binom{p+2}{2i} S_{p+2-2i}(n)}{(p+2)(p+1)}.$$
(1)

Exercise 2 Let $p \ge 2$ be even. Expand $(t+1)^{p+1} - (t-1)^{p+1}$ and show that this is equal to

$$2\sum_{i=0}^{p/2} \binom{p+1}{2i+1} t^{p-2i}$$

Use this to show that

$$S_{p}(n) = \frac{(n+1)^{p+1} + n^{p+1} - 1 - 2\sum_{i=1}^{p/2} \binom{p+1}{2i+1} S_{p-2i}(n)}{2(p+1)} .$$
(2)

Exercise 3 Using the above recursions or otherwise, prove that

$$S_6(n) = \frac{n(n+1)(2n+1)(3n^4+6n^3-3n+1)}{42} = \frac{S_2(n)(6S^2-6S+1)}{7}$$

and further that

$$S_6(n) = \frac{S(6S^2 - 6S + 1)}{7} \cdot \frac{2n+1}{3}$$

and

$$S_7(n) = S^2 \cdot \frac{6S^2 - 4S + 1}{3}.$$

So we have sufficient grounds to formulate two hypotheses (these are problems 4 and 5 in the Abramovich article):

a) For any odd $p\geq 3$, the quotient $\frac{S_p(n)}{S_3}=\frac{S_p(n)}{S^2}$ is a polynomial in S with rational coefficients;

Crux Mathematicorum, Vol. 40(10), December 2014

b) For any even $p \geq 2$, the quotient $\frac{S_p(n)}{S_2(n)} = \frac{3S_p(n)}{S\cdot(2n+1)}$ is a polynomial in S with rational coefficients. (Or, using the above notation, prove that the quotient $\frac{S_p(n)}{S^{\delta(p)}M_p(n)}$ is a polynomial in S with rational coefficients.)

We will prove both hypotheses in an upcoming article, but for now we note one interesting property of $S_p(n)$ when p is odd. For any odd p, and any natural number n, the natural number $S_p(n)$ is divisible by the natural number $S_1(n)$. Indeed, upon reordering the terms we see that

$$S_p(n) = \sum_{k=1}^n k^p = \sum_{k=0}^{n-1} (n-k)^p.$$
 (3)

Note that $a^p + b^p$ is divisible by a + b if p is odd since $a^p + b^p = a^p - (-b)^p$ and $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$. Then $k^p + (n - k)^p$ is divisible by k + n - k = n for any $k = 1, 2, \dots, n-1$ and therefore

$$2S_p(n) = \sum_{k=1}^n k^p + \sum_{k=0}^{n-1} (n-k)^p = \sum_{k=1}^{n-1} (k^p + (n-k)^p) + 2n^p$$
$$= \sum_{k=1}^{n-1} \left(k^p + \sum_{i=0}^p \binom{p}{i} n^i (-k)^{p-i} \right) + 2n^p .$$

As p is odd, we have

$$2S_p(n) = \sum_{k=1}^{n-1} \sum_{i=1}^p \left(\binom{p}{i} n^i (-k)^{p-i} \right) + 2n^p$$

and every term of the right-hand side is divisible by n.

Exercise 4 By reindexing the right-hand side of (3), show that $(n + 1)|2S_p(n)$. Conclude that the natural number $S_1(n)$ divides the natural number $S_p(n)$.

Remark 1 It is important to understand the subtlety of this statement that we just proved! Despite the fact that the coefficients of the polynomials $S_p(n)$ and $S_1(n)$ are rational numbers, their values and the value of the quotient $\frac{S_p(n)}{S_1(n)}$ are integers for any integer n. But that cannot be said about the quotient $\frac{S_p(n)}{S_1^2(n)}$ (find examples for which this quotient is not an integer). In fact, this quotient for odd $p \geq 3$ is also a polynomial with rational coefficients: this was confirmed above for p = 3, 5, 7 and will be proven for all p later.

To prove hypothesis a) above, we need the following result.

Lemma 1 For any odd $n \ge 5$, there are polynomials $K_n(t)$ with integer coefficients such that

$$(x+1)^n - x^n - 1 - n(x^2 + x) = (x^2 + x)^2 K_n(x^2 + x).$$

Copyright © Canadian Mathematical Society, 2015

434/ VARIATIONS ON A THEME: THE SUM OF EQUAL POWERS OF NATURAL NUMBERS (II)

Proof sketch. Let $t = x^2 + x$ and let $L_n = (x+1)^n - x^n$, $n \in \mathbb{N} \cup \{0\}$. Then $K_n = \frac{(x+1)^n - x^n - 1 - nt}{t}$ and $L_n = t^2 K_n + nt + 1$. We will prove that for any odd $n \ge 5$, K_n is a polynomial in t with integer coefficients.

Note that L_n can be defined by the recurrence

$$L_n = L_{n+2} - (2x+1)L_{n+1} + tL_n$$

for $n \in \mathbb{N} \cup \{0\}$, with $L_0 = 0$ and $L_1 = 1$ (check this!). Then substituting $L_n = t^2 K_n + nt + 1$ into this recurrence yields the recurrence

$$K_{n+4} = (2t+1)K_{n+2} - t^2K_n - (n-2)t + 3$$

for odd $n \ge 5$ with $K_5 = 5, K_7 = 7(t+2)$. Therefore, K_n is a polynomial in t with integer coefficients. \Box

Exercise 5 Using the lemma above and recurrence (1) for $S_p(n)$ for odd p, prove hypothesis a), that is that for any odd $p \geq 3$ there is a polynomial $Q_p(x)$ with rational coefficients such that $S_p(n) = S^2 \cdot Q_p(S)$; find a recursion for $Q_p(S)$.

Remark 2 Polynomials $S^2 \cdot Q_p(S)$, which equal to $S_p(n)$ for odd $p \ge 3$ are called Faulhaber's polynomials in honour of the German mathematician Johann Faulhaber (1580–1635) who first discovered this representation of $S_p(n)$ and computed the first seventeen of the polynomials. Recurrence (3) for calculating $Q_p(S)$ can be practically considered as a recurrence for Faulhaber's polynomials.

Exercise 6 Using recurrence (2) for $S_p(n)$ for even p, prove hypothesis b).

References

Abramovich, V. S., *Sums of equal powers of natural numbers*, *Crux* 40 (6), p. 248–252.

Arkady Alt San Jose, CA, USA