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Variations on a theme: The sum of equal

powers of natural numbers (II)
Arkady Alt

This is the second of a series of notes, organized around the problem of finding a
closed form for :

Sp (n) :=
n∑
k=1

kp = 1p + 2p + ...+ np where p, n ∈ N.

In the first article, which appeared in issue 8 of this volume, we showed that Sp (n)
is always a polynomial in n of degree p+ 1, and we went over various ways to find
that polynomial. As a review, the reader is encouraged to use one or more of these
techniques to verify that

S2 (n) =
n(n+ 1)(2n+ 1)

6
= S1(n) · 2n+ 1

3
,

S3 (n) =
n2 (n+ 1)

2

4
= S2

1 (n) ,

S4 (n) =
n (n+ 1) (2n+ 1)

(
3n2 + 3n− 1

)
30

= S2 (n) · 6S1 (n)− 1

5
,

S5 (n) =
n2 (n+ 1)

2

12

(
2n2 + 2n− 1

)
= S2

1 (n) · 4S1 (n)− 1

3
.

The frequency with which the factor S1(n) appears is striking. In what follows,
we will investigate the reasons for this.

The structure of Sp(n)

Because S1(n) appears so often, we will abbreviate it as S. We thus have (see the
article by V. S. Abramovich in issue 6 of this volume):

S2(n) = S · 2n+ 1

3

S3(n) = S2

S4(n) = S2(n) · 6S − 1

5
=
S(6S − 1)

5
· 2n+ 1

3

S5(n) = S2 · 4S − 1

3
= S3 ·

4S − 1

3

We observe that S4(n) = P (S)S2(n) and S5(n) = Q(S)S3(n), where P and Q
are first-degree polynomials with rational coefficients. Does this pattern continue?
We conjecture that Sp(n) = Sδ(p)Qp(S) ·Mp(n), where

Mp(n) =

®
1 if p is odd,
2n+1

3 if p is even,
δ(p) =

®
2 if p is odd,

1 if p is even,
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and Qp(S) is a polynomial of degree
[
p+1
2

]
−δ(p) with rational coefficients. Because

we are looking at patterns that skip a value of p, it will be convenient to find
recurrences that do the same thing – using S1, S3, . . . , S2n−1 to find S2n+1 and
S2, S4, . . . , S2n−2 to find S2n.

Recurrence relations for Sp for odd p and for even p

Exercise 1 Let p ≥ 3 be odd. Expand (t+ 1)
p+2

+ (t− 1)
p+2

and show that this
is equal to

2

p+1
2∑
i=0

Ç
p+ 2

2i

å
tp+2−2i .

Use this to show that

Sp (n) =

(n+ 1)
p+2 − np+2 − 1− (p+ 2)

(
n2 + n

)
− 2

∑ p−1
2

i=2

Ç
p+ 2

2i

å
Sp+2−2i (n)

(p+ 2) (p+ 1)
.

(1)

Exercise 2 Let p ≥ 2 be even. Expand (t+ 1)
p+1 − (t− 1)

p+1
and show that this

is equal to

2

p/2∑
i=0

Ç
p+ 1

2i+ 1

å
tp−2i .

Use this to show that

Sp (n) =

(n+ 1)
p+1

+ np+1 − 1− 2
∑p/2
i=1

Ç
p+ 1

2i+ 1

å
Sp−2i (n)

2 (p+ 1)
. (2)

Exercise 3 Using the above recursions or otherwise, prove that

S6 (n) =
n (n+ 1) (2n+ 1)

(
3n4 + 6n3 − 3n+ 1

)
42

=
S2 (n)

(
6S2 − 6S + 1

)
7

and further that

S6(n) =
S(6S2 − 6S + 1)

7
· 2n+ 1

3

and

S7 (n) = S2 · 6S2 − 4S + 1

3
.

So we have sufficient grounds to formulate two hypotheses (these are problems 4
and 5 in the Abramovich article):

a) For any odd p ≥ 3 , the quotient
Sp(n)
S3

=
Sp(n)
S2 is a polynomial in S with

rational coefficients;
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b) For any even p ≥ 2 , the quotient
Sp(n)
S2(n)

=
3Sp(n)
S·(2n+1) is a polynomial in S

with rational coefficients. (Or, using the above notation, prove that the quotient
Sp(n)

Sδ(p)Mp(n)
is a polynomial in S with rational coefficients.)

We will prove both hypotheses in an upcoming article, but for now we note one
interesting property of Sp (n) when p is odd. For any odd p, and any natural
number n, the natural number Sp (n) is divisible by the natural number S1 (n) .
Indeed, upon reordering the terms we see that

Sp (n) =
n∑
k=1

kp =
n−1∑
k=0

(n− k)
p
. (3)

Note that ap + bp is divisible by a + b if p is odd since ap + bp = ap − (−b)p and
an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1). Then kp + (n− k)p is divisible by
k + n− k = n for any k = 1, 2, . . . , n− 1 and therefore

2Sp (n) =
n∑
k=1

kp +
n−1∑
k=0

(n− k)
p

=
n−1∑
k=1

(kp + (n− k)
p
) + 2np

=
n−1∑
k=1

(
kp +

p∑
i=0

Ç
p

i

å
ni(−k)p−i

)
+ 2np .

As p is odd, we have

2Sp(n) =
n−1∑
k=1

p∑
i=1

ÇÇ
p

i

å
ni(−k)p−i

å
+ 2np

and every term of the right-hand side is divisible by n.

Exercise 4 By reindexing the right-hand side of (3), show that (n + 1)|2Sp(n).
Conclude that the natural number S1(n) divides the natural number Sp(n).

Remark 1 It is important to understand the subtlety of this statement that we
just proved! Despite the fact that the coefficients of the polynomials Sp(n) and

S1(n) are rational numbers, their values and the value of the quotient
Sp(n)
S1(n)

are

integers for any integer n. But that cannot be said about the quotient
Sp(n)

S2
1(n)

(find

examples for which this quotient is not an integer). In fact, this quotient for odd
p ≥ 3 is also a polynomial with rational coefficients: this was confirmed above for
p = 3, 5, 7 and will be proven for all p later.

To prove hypothesis a) above, we need the following result.

Lemma 1 For any odd n ≥ 5, there are polynomials Kn(t) with integer coeffi-
cients such that

(x+ 1)n − xn − 1− n(x2 + x) = (x2 + x)2Kn(x2 + x).
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Proof sketch. Let t = x2 + x and let Ln = (x + 1)n − xn, n ∈ N ∪ {0}. Then

Kn = (x+1)n−xn−1−nt
t and Ln = t2Kn + nt + 1. We will prove that for any odd

n ≥ 5, Kn is a polynomial in t with integer coefficients.

Note that Ln can be defined by the recurrence

Ln = Ln+2 − (2x+ 1)Ln+1 + tLn

for n ∈ N ∪ {0}, with L0 = 0 and L1 = 1 (check this!). Then substituting
Ln = t2Kn + nt+ 1 into this recurrence yields the recurrence

Kn+4 = (2t+ 1)Kn+2 − t2Kn − (n− 2)t+ 3

for odd n ≥ 5 with K5 = 5,K7 = 7(t+ 2). Therefore, Kn is a polynomial in t with
integer coefficients. 2

Exercise 5 Using the lemma above and recurrence (1) for Sp(n) for odd p, prove
hypothesis a), that is that for any odd p ≥ 3 there is a polynomial Qp(x) with
rational coefficients such that Sp(n) = S2 ·Qp(S); find a recursion for Qp(S).

Remark 2 Polynomials S2 ·Qp(S), which equal to Sp(n) for odd p ≥ 3 are called
Faulhaber’s polynomials in honour of the German mathematician Johann Faul-
haber (1580–1635) who first discovered this representation of Sp(n) and computed
the first seventeen of the polynomials. Recurrence (3) for calculating Qp(S) can
be practically considered as a recurrence for Faulhaber’s polynomials.

Exercise 6 Using recurrence (2) for Sp(n) for even p, prove hypothesis b).
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