Variations on a theme: The sum of equal powers of natural numbers (II)

Arkady Alt

This is the second of a series of notes, organized around the problem of finding a closed form for :

$$
S_{p}(n):=\sum_{k=1}^{n} k^{p}=1^{p}+2^{p}+\ldots+n^{p} \text { where } p, n \in \mathbb{N} .
$$

In the first article, which appeared in issue 8 of this volume, we showed that $S_{p}(n)$ is always a polynomial in n of degree $p+1$, and we went over various ways to find that polynomial. As a review, the reader is encouraged to use one or more of these techniques to verify that

$$
\begin{aligned}
& S_{2}(n)=\frac{n(n+1)(2 n+1)}{6}=S_{1}(n) \cdot \frac{2 n+1}{3} \\
& S_{3}(n)=\frac{n^{2}(n+1)^{2}}{4}=S_{1}^{2}(n) \\
& S_{4}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}=S_{2}(n) \cdot \frac{6 S_{1}(n)-1}{5} \\
& S_{5}(n)=\frac{n^{2}(n+1)^{2}}{12}\left(2 n^{2}+2 n-1\right)=S_{1}^{2}(n) \cdot \frac{4 S_{1}(n)-1}{3}
\end{aligned}
$$

The frequency with which the factor $S_{1}(n)$ appears is striking. In what follows, we will investigate the reasons for this.

The structure of $S_{p}(n)$

Because $S_{1}(n)$ appears so often, we will abbreviate it as S. We thus have (see the article by V. S. Abramovich in issue 6 of this volume):

$$
\begin{aligned}
& S_{2}(n)=S \cdot \frac{2 n+1}{3} \\
& S_{3}(n)=S^{2} \\
& S_{4}(n)=S_{2}(n) \cdot \frac{6 S-1}{5}=\frac{S(6 S-1)}{5} \cdot \frac{2 n+1}{3} \\
& S_{5}(n)=S^{2} \cdot \frac{4 S-1}{3}=S_{3} \cdot \frac{4 S-1}{3}
\end{aligned}
$$

We observe that $S_{4}(n)=P(S) S_{2}(n)$ and $S_{5}(n)=Q(S) S_{3}(n)$, where P and Q are first-degree polynomials with rational coefficients. Does this pattern continue? We conjecture that $S_{p}(n)=S^{\delta(p)} Q_{p}(S) \cdot M_{p}(n)$, where

$$
M_{p}(n)=\left\{\begin{array}{ll}
1 & \text { if } p \text { is odd }, \\
\frac{2 n+1}{3} & \text { if } p \text { is even }
\end{array} \quad \delta(p)= \begin{cases}2 & \text { if } p \text { is odd } \\
1 & \text { if } p \text { is even }\end{cases}\right.
$$

and $Q_{p}(S)$ is a polynomial of degree $\left[\frac{p+1}{2}\right]-\delta(p)$ with rational coefficients. Because we are looking at patterns that skip a value of p, it will be convenient to find recurrences that do the same thing - using $S_{1}, S_{3}, \ldots, S_{2 n-1}$ to find $S_{2 n+1}$ and $S_{2}, S_{4}, \ldots, S_{2 n-2}$ to find $S_{2 n}$.

Recurrence relations for S_{p} for odd p and for even p

Exercise 1 Let $p \geq 3$ be odd. Expand $(t+1)^{p+2}+(t-1)^{p+2}$ and show that this is equal to

$$
2 \sum_{i=0}^{\frac{p+1}{2}}\binom{p+2}{2 i} t^{p+2-2 i}
$$

Use this to show that
$S_{p}(n)=\frac{(n+1)^{p+2}-n^{p+2}-1-(p+2)\left(n^{2}+n\right)-2 \sum_{i=2}^{\frac{p-1}{2}}\binom{p+2}{2 i} S_{p+2-2 i}(n)}{(p+2)(p+1)}$.

Exercise 2 Let $p \geq 2$ be even. Expand $(t+1)^{p+1}-(t-1)^{p+1}$ and show that this is equal to

$$
2 \sum_{i=0}^{p / 2}\binom{p+1}{2 i+1} t^{p-2 i}
$$

Use this to show that

$$
\begin{equation*}
S_{p}(n)=\frac{(n+1)^{p+1}+n^{p+1}-1-2 \sum_{i=1}^{p / 2}\binom{p+1}{2 i+1} S_{p-2 i}(n)}{2(p+1)} \tag{2}
\end{equation*}
$$

Exercise 3 Using the above recursions or otherwise, prove that

$$
S_{6}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42}=\frac{S_{2}(n)\left(6 S^{2}-6 S+1\right)}{7}
$$

and further that

$$
S_{6}(n)=\frac{S\left(6 S^{2}-6 S+1\right)}{7} \cdot \frac{2 n+1}{3}
$$

and

$$
S_{7}(n)=S^{2} \cdot \frac{6 S^{2}-4 S+1}{3}
$$

So we have sufficient grounds to formulate two hypotheses (these are problems 4 and 5 in the Abramovich article):
a) For any odd $p \geq 3$, the quotient $\frac{S_{p}(n)}{S_{3}}=\frac{S_{p}(n)}{S^{2}}$ is a polynomial in S with rational coefficients;
b) For any even $p \geq 2$, the quotient $\frac{S_{p}(n)}{S_{2}(n)}=\frac{3 S_{p}(n)}{S \cdot(2 n+1)}$ is a polynomial in S with rational coefficients. (Or, using the above notation, prove that the quotient $\frac{S_{p}(n)}{S^{\delta(p)} M_{p}(n)}$ is a polynomial in S with rational coefficients.)
We will prove both hypotheses in an upcoming article, but for now we note one interesting property of $S_{p}(n)$ when p is odd. For any odd p, and any natural number n, the natural number $S_{p}(n)$ is divisible by the natural number $S_{1}(n)$. Indeed, upon reordering the terms we see that

$$
\begin{equation*}
S_{p}(n)=\sum_{k=1}^{n} k^{p}=\sum_{k=0}^{n-1}(n-k)^{p} \tag{3}
\end{equation*}
$$

Note that $a^{p}+b^{p}$ is divisible by $a+b$ if p is odd since $a^{p}+b^{p}=a^{p}-(-b)^{p}$ and $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+b^{n-1}\right)$. Then $k^{p}+(n-k)^{p}$ is divisible by $k+n-k=n$ for any $k=1,2, \ldots, n-1$ and therefore

$$
\begin{aligned}
2 S_{p}(n)=\sum_{k=1}^{n} k^{p}+\sum_{k=0}^{n-1}(n-k)^{p} & =\sum_{k=1}^{n-1}\left(k^{p}+(n-k)^{p}\right)+2 n^{p} \\
& =\sum_{k=1}^{n-1}\left(k^{p}+\sum_{i=0}^{p}\binom{p}{i} n^{i}(-k)^{p-i}\right)+2 n^{p}
\end{aligned}
$$

As p is odd, we have

$$
2 S_{p}(n)=\sum_{k=1}^{n-1} \sum_{i=1}^{p}\left(\binom{p}{i} n^{i}(-k)^{p-i}\right)+2 n^{p}
$$

and every term of the right-hand side is divisible by n.
Exercise 4 By reindexing the right-hand side of (3), show that $(n+1) \mid 2 S_{p}(n)$. Conclude that the natural number $S_{1}(n)$ divides the natural number $S_{p}(n)$.
Remark 1 It is important to understand the subtlety of this statement that we just proved! Despite the fact that the coefficients of the polynomials $S_{p}(n)$ and $S_{1}(n)$ are rational numbers, their values and the value of the quotient $\frac{S_{p}(n)}{S_{1}(n)}$ are integers for any integer n. But that cannot be said about the quotient $\frac{S_{p}(n)}{S_{1}^{2}(n)}$ (find examples for which this quotient is not an integer). In fact, this quotient for odd $p \geq 3$ is also a polynomial with rational coefficients: this was confirmed above for $p=3,5,7$ and will be proven for all p later.
To prove hypothesis a) above, we need the following result.
Lemma 1 For any odd $n \geq 5$, there are polynomials $K_{n}(t)$ with integer coefficients such that

$$
(x+1)^{n}-x^{n}-1-n\left(x^{2}+x\right)=\left(x^{2}+x\right)^{2} K_{n}\left(x^{2}+x\right) .
$$

434/ VARIATIONS ON A THEME: THE SUM OF EQUAL POWERS OF NATURAL NUMBERS (II)

Proof sketch. Let $t=x^{2}+x$ and let $L_{n}=(x+1)^{n}-x^{n}, n \in \mathbb{N} \cup\{0\}$. Then $K_{n}=\frac{(x+1)^{n}-x^{n}-1-n t}{t}$ and $L_{n}=t^{2} K_{n}+n t+1$. We will prove that for any odd $n \geq 5, K_{n}$ is a polynomial in t with integer coefficients.

Note that L_{n} can be defined by the recurrence

$$
L_{n}=L_{n+2}-(2 x+1) L_{n+1}+t L_{n}
$$

for $n \in \mathbb{N} \cup\{0\}$, with $L_{0}=0$ and $L_{1}=1$ (check this!). Then substituting $L_{n}=t^{2} K_{n}+n t+1$ into this recurrence yields the recurrence

$$
K_{n+4}=(2 t+1) K_{n+2}-t^{2} K_{n}-(n-2) t+3
$$

for odd $n \geq 5$ with $K_{5}=5, K_{7}=7(t+2)$. Therefore, K_{n} is a polynomial in t with integer coefficients.

Exercise 5 Using the lemma above and recurrence (1) for $S_{p}(n)$ for odd p, prove hypothesis a), that is that for any odd $p \geq 3$ there is a polynomial $Q_{p}(x)$ with rational coefficients such that $S_{p}(n)=S^{2} \cdot Q_{p}(S)$; find a recursion for $Q_{p}(S)$.
Remark 2 Polynomials $S^{2} \cdot Q_{p}(S)$, which equal to $S_{p}(n)$ for odd $p \geq 3$ are called Faulhaber's polynomials in honour of the German mathematician Johann Faulhaber (1580-1635) who first discovered this representation of $S_{p}(n)$ and computed the first seventeen of the polynomials. Recurrence (3) for calculating $Q_{p}(S)$ can be practically considered as a recurrence for Faulhaber's polynomials.

Exercise 6 Using recurrence (2) for $S_{p}(n)$ for even p, prove hypothesis b).

References

Abramovich, V. S., Sums of equal powers of natural numbers, Crux 40 (6), p. 248-252.

$$
\because \cdot \cdot
$$

Arkady Alt
San Jose, CA, USA

